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Tensegrity spline beam and grid shell structures
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Abstract

This paper considers a class of tensegrity structures with continuous tubular compression booms forming curved splines, which
may be deployed from straight by prestressing a cable bracing system. A free-form arch structure for the support of prestressed
membranes is reviewed and the concepts are extended to a two-way spanning system for double layer grid shell structures. A
numerical analysis based on the Dynamic Relaxation (DR) method is developed which caters specifically for the form-finding and
load analysis of this type of structure; a particular feature of the analysis is that bending components are treated in a finite difference
form with three degrees of freedom per node rather than six. This simplifies the treatment of sliding collar nodes which may be
used along the continuous compression booms of deployable systems. © 2000 Elsevier Science Ltd and Civil-Comp Ltd. All
rights reserved.
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1. Cable braced spline arches

Arch structures are frequently used for the support of
tensile membrane structures, and for small-scale struc-
tures they can be very slender because they are stabilised
by the prestress in the membranes. The simplest and
smallest examples are the tubular “battens” used for
stressing out igloo form camping tents, but medium-
scale and slender arch systems have also been used for
structures such as canopies for stages or stadia cladding
such as the arch ribs at the Don Valley Stadium [1:88–
91]. For these medium spans, of say 15 m, simple cable
bracing in the arch plane may be used to prevent asym-
metric distortion, but lateral bracing by the membrane
means that the arch rib can be slender though flexible.
The aspects of lightness and flexibility for supporting
arches fits well with the concepts of prestressed surface
structures, which are flexible and accommodate to
applied loads.
For large-scale structures, slender arch ribs stabilised

solely by a prestressed membrane are not feasible; the
membrane fabric is too flexible to provide adequate brac-
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ing. Consequently the arches need to be stiff and can
become quite massive structures. In contrast, the design
concept for the Oleada main entrance structure at the
Seville EXPO (Fig. 1) was intended to employ arches
with a slender pin-jointed compression boom surrounded
by a prestressed cable bracing system to provide
adequate bending stiffness [2]. To sustain asymmetric
loading due to cross winds however, the required tor-
sional bracing became quite stiff and complex in the
sense that separate rod members with close construction

Fig. 1. Oleada main entrance structure at Seville EXPO.
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Fig. 2. Perspective of Tensegrity Arch supporting large-span mem-
brane.

tolerances would be required; entailing expensive joints
and construction methods. The system was therefore
abandoned in preference to the use of welded tubular
arches. The main span of 80 m required tubes of 810 mm
diameter; still slender, but far less so than the impression
which would have been given by the cable braced system
which required central compression booms of only 280
mm diameter.
The ideas for the above system have since been

revisited, and in particular the construction problems of
potential lack-of-fit in members have been alleviated by
a torsion free cable braced arch [3]. The system is illus-
trated in Figs. 2 and 3. Apart from simplifying construc-
tion, in the sense that only the longitudinal cable chords
or potentially only one chord needs to be prestressed,
the structural system is also more able to deform to
accommodate loadings and avoid stress concentrations
in the membrane — because of the torsional freedom
the membrane stresses either side of the tensegrity arch
equilibrate each other. Fig. 4 shows an extreme cross
wind case demonstrating the stability of the system.
Although the idea of pin-jointed boom members (with

surrounding tensegrity yokes and cable bracing) may be
attractive, and feasible for long spans, the cost of the

Fig. 3. Detail of Tensegrity Arch.

Fig. 4. Stability of Tensegrity Arch under extreme cross wind case.

pinned or sphere joints would still be high. For medium
span systems it should be preferable to use a continuous
tubular compression boom (rather than one which is cut
into discrete lengths and then joined again). This idea of
a less interrupted flow of direct (axial) forces is also cru-
cial to the concept of grid shells with simple jointing of
continuous members [4]; these are considered in a later
section. However, to borrow another idea from grid shell
systems, which are erected into a doubly curved form
with lathes bent from an initially straight state, the cen-
tral tubular boom in a medium span tensegrity arch
might also be bent from straight. For larger spans a
centre core bundle (for example of three tubes) might
be used; the principal aim being to reduce the bending
stiffness and stresses without reduction of the axial stiff-
ness and strength. The bending stiffness is subsequently
provided by prestressing out cable bracing around the
central boom or core.
The numerical form-finding of these systems requires

a procedure which allows for the lengths or tensions of
component links to be controlled either elastically or
held at specified values. In addition, slip links are
required in which forces in consecutive elements are
equal; for example the tensions in one or more continu-
ous cable chord members which during form-finding
(and erection) may slide through the apex nodes of the
triangular yokes; or compressions in adjacent links of
the central tube or tube bundle may need to be equalised
because the diagonal cables are attached to sliding col-
lars. The latter would be required for systems which may
be deployed and prestressed by drawing out a cable,
yoke and collar system along the central boom. All of
these features are readily incorporated in most tensile
structures CAD systems, the simplest of which is prob-
ably a Dynamic Relaxation (DR) scheme which is sum-
marised below, and described in detail in ref. [5]. A
further aspect required, or at least desirable, in the
numerical analysis is the treatment of the spline beams
as a finite difference continuum, and this is developed
in Section 3 of this paper.
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2. Dynamic relaxation numerical scheme

The basis of the method is to trace step-by-step for
small time increments, �t, the motion of each node of
a structure until, due to artificial damping, the structure
comes to rest in static equilibrium. In form-finding the
process may be started from an arbitrary specification of
geometry, with the motion caused by imposing a stress
or force specification in some or all of the structure
components. The form-finding is usually carried out for
a weightless state since, after obtaining an equilibrium
state, this allows a subsequent factoring of the prestress
forces in all components without affecting the geometry.
For load analyses, which must start from the prestress
equilibrium state, the motion is caused by suddenly
applying the loading.
The description of DR summarised briefly below for

skeletal structures with strut and cable links assumes
“kinetic” damping of the structural system to obtain a
static equilibrium state [5]. In this procedure the
undamped motion of the structure is traced and when a
local peak in the total kinetic energy of the system is
detected, all velocity components are set to zero. The
process is then restarted from the current geometry and
repeated through further (generally decreasing) peaks
until the energy of all modes of vibration have been dis-
sipated and static equilibrium is achieved.
Newton’s second law governing the motion of any

node i in direction x at time t is:

Rt
ix�Mi.Vt

ix (1)

where Rix is the residual force and Mi is the (fictitious)
lumped mass at node i, which is set to optimise conver-
gence and ensure stability of the numerical process [5].
Expressing the acceleration term in Eq. (1) in finite

difference form and rearranging gives the recurrence
equation for updating velocity components:

Vt+�t/2
ix �Vt−�t/2

ix �
�t
Mi

.Rt
ix (2)

Whence the updated geometry projected to time
(t+�t) is:

xt+�t
i �xt

i��t.Vt+�t/2
ix (3)

Similar Eqs. (2) and (3) apply for all unconstrained
nodes of the structure in each co-ordinate direction, and
the equations are nodally decoupled in the sense that
updated velocity components are dependent only on pre-
vious velocity and residual force components at a node.
They are not directly influenced by the current (t+�t/2)
updates at other nodes.
Having obtained the complete updated geometry the

new link forces can be determined and resolved, together

with any applied load components, to give the updated
residuals:

Rt��t
ix �Pt��t

ix ���T
L�t��t

m

.(xj�xi)t��t (4)

all links m connecting to i

where Tm is the tension in link m connecting node i to
an adjacent node j, and Lm is the current length of link m.
The procedure is thus time stepped using Eqs. (2)–(4)

until a kinetic energy peak is detected. Velocity compo-
nents are then reset to zero (with a small adjustment
made to the geometry to correct to the true kinetic
energy time peak), and the process is repeated until
adequate convergence.
In skeletal structures the link tensions for use in Eq.

(4) are given by:
T t+�t

m �Ts
m�K s

m(Lt+�t
m �Ls

m) (5)

Where Ts
m,Ks

m,Ls
m are respectively the “initial” or

specified tension, elastic stiffness and length of a link
m. In load analyses the initial state will be the prestress
equilibrium geometry and tensions and Ks

m is the elastic
stiffness; but in form-finding, any of the properties with
superscript s can be used to control the form [6] — for
example, tensions can be held constant by setting K to
zero. (For continuous compression members with sliding
collar nodes, compression throughout are based on elas-
tic stiffness and overall contraction.)

3. Spline beam elements

The spline beam element described below is useful
for modelling spline beams or grid shells employing con-
tinuous tubular members, and also for membranes in
which flexible battens are employed to give shape con-
trol (usually for small span systems). It has significant
advantages in a DR scheme since it requires only three
translational degrees of freedom per node. Rotational
degrees of freedom are not required, and it is often the
coupling of these with axial stiffnesses and translational
degrees of freedom, which can cause conditioning prob-
lems in explicit numerical methods such as DR. Further-
more, the treatment of sliding collars along continuous
tubes is considerably simplified. The scheme adopted is,
in effect, a finite difference modelling of a continuous
spline beam traverse, and a similar scheme has been used
for two-dimensional dynamic problems by Pian et al. [7].
Fig. 5a represents consecutive nodes along an initially

straight tubular beam traverse, and Fig. 5b two adjacent
deformed segments, a and b, viewed normal to the plane
of nodes ijk which are assumed to lie on a circular arc
of radius R. The spacings of nodes along the traverse
must be sufficiently close to model this, but the segment
lengths need not be equal.
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Fig. 5. (a) Consecutive nodes along an initially straight tubular beam
traverse; (b) Two adjacent deformed segments, a and b, viewed normal
to the plane of nodes ijk.

From the geometry of Fig. 5b, the radius of curvature
through i j k and the consequent Moment M are:

R�
lc

2sina and M�
EI
R

(Note that EI is assumed constant along the traverse)
The free body shears of elements a and b are there-

fore:

Sa�
2EI.sina

la.lc
; Sb�

2EI.sina
lb.lc

(6)

These must be taken as acting normal to the chords
and in the local plane of i j k. The calculations and trans-
formations required in a DR scheme are thus very sim-
ple, with sets of three consecutive nodes being con-
sidered sequentially along the entire traverse; each set
lying in different planes when modelling a spatial curve.
If the traverse is pin-ended, as would normally be the
case for traverses in grid shells, no special numerical
treatment for end conditions is required. If the traverse
is a closed loop then overlapping end segments are
required. (A similar finite difference type of modelling
would be required for fixed-ended traverses using
extended end segments). If the stiffnesses used when set-
ting nodal masses in the DR process [5] are unfactored,
the minimum length of any traverse segment should not
be less than the radius of gyration of the cross-section.
In practice this limit is not likely to be approached; but
if so, appropriate factoring of the bending stiffness must
be applied when setting mass components in order to
allow for coupling of the axial displacements with bend-
ing stiffnesses.
Although the above analysis would clearly apply to a

spline beam traverse bent into a single plane, with accu-
racy dependent only on the number of segments, it might
be questioned whether it is applicable to a spatially
twisted spline since apparently no torsional stiffness
enters into the analysis; yet in fact this is the case pro-

vided the spline is initially straight and with EI constant
about any axis: Considering an initially straight spline
bent into a closed ring of radius R, and subject to equal
and opposite loads P applied at the quarter points normal
to the plane of the ring (Fig. 6):
If the bending moment about a radial axis at A is M

and the torsion at this location is T, then moment equilib-
rium about axes parallel to x and y through A gives:

PR
2 (1� sin q)�M cosq�T sinq (7)

and
PR
2 (1� cosq)�T cosq�M sinq

thus:

T�
PR
2 (sinq�cosq�1); M�

PR
2 (cosq� sinq) (8)

and M�
dT
dq

but the prestressing moment (about an axis normal to
the plane of the ring) is EI/R, and the component of this
along the axis of T is:

T�
EI
R
.
dw
Rdq (9)

where w is the normal displacement. Differentiating this
gives the full elastic stiffness moment:

M�EI
d2w

R2dq2 (10)

Fig. 6. Closed Ring with equal and opposite loads P at the quarter
points normal to the plane of the ring.
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Thus the whole torsion T is due to the prestressing
effect (of bending the initially straight spline tube into
a closed ring), and there is no component due to twisting
and the elastic torsion constant GJ. A more general proof
for splines with uniform second moment of area bent
into any spatial curve has been developed by Williams
and is given in ref. [8].
Substituting T or M from Eq. (8) into Eq. (9) or Eq.

(10), and integrating gives:

w�
PR3

2EI(� cosq�sinq�q)�constant (11)

If � is the displacement of the downward loads rela-
tive to the upwards loads then:

��
PR3

EI �1��

4� (12a)

For the same ring, but unstrained in its initial circular
state, the displacements(s) corresponding to the same
out-of-plane loading can be shown to be:

��
PR3

2EI��

2�1��
PR3

2GJ(��3) (12b)

It is interesting to note that the out-of-plane stiffness
given by Eq. (12a) which is due principally to geometric
stiffening by initial straining, is greater than that given
by Eq. (12b) (in contrast, the in-plane-stiffness is ident-
ical for both, provided EI is the same).

4. Test cases

4.1. Out-of-plane loading of a closed ring

The prestressed ring provides a useful test for examin-
ing convergence and the effect of unequal segment
lengths. In the following, the ring is divided into four
quadrants: 1–2, 2–3, 3–4, 4–1, with respectively: n, 2n,
4n, and 8n segments; Fig. 7 shows a subdivision density
of n=2. The test ring has a diameter of 10 m, EI=100
kNm2, EA=100 MN, and loads of 1 kN applied in the z
(normal) direction at nodes 1 and 3, with nodes 2 and
4 restrained in the z direction only. Table 1 gives values
of normal displacement � at nodes 1 and 3 with increas-
ing subdivision density n. For comparison, correspond-
ing values �e obtained using equivalent numbers of
equal segments are also shown (n=8 corresponds to
120 segments).
The fully converged solution of �=0.2680 m is

slightly stiffer than the figure of 0.2683 m given by Eq.
(12a) due to the axial tension stiffening effect.

Fig. 7. Ring with segments distributed non-uniformly.

4.2. Strut buckling into the elastica

Buckling of a pin-ended strut into the elastica also
provides a useful comparison for testing convergence of
the numerical process. An appropriate analytical func-
tion and tabulated results defining the shape of the elas-
tica (Fig. 8) are given by Timoshenko [9:79].
The numerical test example is a tubular strut of length

L=10 m and the same section properties as used for the
previous test case (Section 4.1). The strut, supported on
end rollers and restrained to lie in the xy plane, is subject
to increasing pairs of end axial loads, all above the Euler
load. The four states of loading used for comparing the
analytical results with numerical values obtained using
increasing number of segments are shown in Fig. 9, and
the results are tabulated in Table 2. The table gives

values for
x
L
and

y
L
at the central node and shows good

correlation and convergence.
Note that state 4 is a particularly sensitive test: the

end loads must be applied symmetrically and the model
must remain symmetric at all stages, otherwise when it
has passed through from state 3 to state 4 it is possible
for the elastica to unwrap. For example when the load
is applied at one end with the other end pinned, some
lack of symmetry is induced during the numerical pro-
cess. The system inverts to the stage shown in Fig. 10a
but then unwraps around the pinned end to stage 10b
and finally converges to a straight member in tension.

5. Applications

The application of the foregoing spline analysis to ten-
segrity arches with continuous spline booms has been
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Table 1
Normal displacements � for non-uniformly distributed segments and �e for uniformly distributed segments with increasing subdivision density

n 2 4 8 16 24

� (m) 0.3009 0.2762 0.2700 0.2684 0.2681
�e (m) 0.2698 0.2684 0.2680 0.2680

Fig. 8. Diagram showing,
x
L
and

y
L
and P.

Fig. 9. Elastica in four buckled states.

Table 2
Analytical and numerical values of displacement for central node of beam under four buckled states

Buckled states 1 2 3 4
Load 10.48 kN 12.67 kN 18.46 kN 39.48 kN

Central node x/L y/L x/L y/L x/L y/L x/L y/L

Analytical 0.4405 0.2110 0.2800 0.3595 0.0615 0.4015 �0.1700 0.3125
Numerical
8 segments 0.4176 0.2466 0.2388 0.3830 �0.0194 0.4080 �0.2030 0.3175
16 segments 0.4363 0.2184 0.2752 0.3630 0.0495 0.4032 �0.1916 0.3077
32 segments 0.4402 0.2116 0.2829 0.3583 0.0614 0.4022 �0.1738 0.3120
64 segments 0.4413 0.2099 0.2848 0.3572 0.0614 0.4019 �0.1699 0.3130

referred to in Section 1, and indeed the three degree of
freedom numerical procedure was developed in order to
cater in a simple way with sliding collars along a bent
spline (specifically, during deployment). Using a more
normal six degree of freedom procedure (with both
rotational and translational degrees of freedom at each
node) would be complex when the lengths of member
segments are effectively changing due to the sliding col-
lars. Other useful applications of the numerical pro-
cedure are discussed in the following sections.

Fig. 10. (a) Elastica with load applied at one end, other end pinned
during converging process; (b) Elastica unwraps around pinned end.

5.1. Slender hoop rib supported membranes

For prestressed membrane structures supported by cir-
cular arches, or slender hoop ribs, of radius R0 which
are initially unstrained at this radius, the three degree of
freedom spline analysis can be used provided “initial
state” shears S1 and S2 are applied to the two end seg-
ments throughout the analysis, as shown in Fig. 11. In
order to allow for rigid body rotations of the circular arc
during analyses (when calculating nodal residuals) these
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Fig. 11. Shear forces S1 and S2 are applied to the two end segments
throughout the analysis for circular arches initially unstrained.

shears must always be applied in the plane containing
the two end vectors �1 and �2.
Note that if these shears were applied to the end seg-

ments of an originally straight spline, all nodes along the
spline would lie exactly on an arc of radius R0; the shears
are required in the analysis to give the initial arc state,
and although it is clearly highly strained in this state, all
of the interior shears cancel — so the effect is the same
as an unstrained arc. When calculating in-plane moments
at the end of an analysis the effect of R0 must obviously
be accounted for using M=EI(1/R�1/R0), where R is the
local radius of the deformed arc. Out-of-plane moments
are determined using displacements normal to the aver-
age plane of the deformed arc.
The analysis for unstrained arcs (rather than arcs bent

from straight) is clearly approximate since the value of
EI would correspond to the stiffness in only one direc-
tion (e.g. the radial direction for in plane bending), but
it is useful for structures such as battened or hoop sup-
ported membranes. For both of these systems bending
or snap through bucking behaviour is significant in only
one direction — radially for hoop supported systems and
normal to the (average) membrane plane for battened
systems.

5.2. Grid shells

In numerically modelling the form and behaviour of
grid shell structures, one approach is to derive an initial
form by means of a hanging funicular net [10] and sub-
sequently to analyse the structure for various load states
with a model employing six degrees of freedom at each
node [4]. These analyses should clearly include the
initial curvature from straight as an initial strain state,
and indeed the correct initial self weight geometry can
only be accurately obtained when this is accounted for.
Grid shells are a particular class of structure in which a
two-way grid of continuous members is deployed from
straight, and the foregoing analysis provides an elegant
technique for their form-finding and analysis. Conven-
tionally they are single layer systems, although the conti-
nuity of members through nodes necessitates a finite sep-
aration of the two sets of grid members, with a connector
between. Diagonal cables lying in the mean plane of the

grid enable the dominant membrane stiffness to be
gained after light prestressing.
The concepts of the tensegrity arch referred to in Sec-

tion 1 can be extended to two-way spanning double layer
grids as shown in Fig. 12a and b. The two sets of tubular
members can be either straight or bent from straight by
prestressing the cable bracing system to form a curved
structure. The cables are braced apart by flying struts
and the tubular members are continuous with sliding col-
lars to which the diagonal bracing is attached. The latter
could enable deployment of the system from an initial
bundled state with the tubes extended by slotting on
additional sections as the cable bracing system is drawn
out. Physical and numerical studies of these systems are
being undertaken at the University of Bath, Department
of Architecture and Civil Engineering [11].

6. Concluding remarks

The bending routine explained in this paper is based
upon a translational three degree of freedom approach

Fig. 12. (a) Two-way spanning double layer tensegrity grid computer
model; (b) Two-way spanning double layer tensegrity grid physical
model.
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developed for spatially curved continuous tubular splines
bent from straight. The results for the test cases of a ring
bent normal to its initial plane and a strut buckling into
the elastica have demonstrated the stability and conver-
gence of the process within a DR scheme. The method
is particularly useful when applied to systems such as
grid shells and cable braced splines with sliding collars.
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