JOURNAL PUBLICATION: Experimental and Numerical Characterization of a Rotational Kirigami System

Engineered kirigami strategies enable structural systems that reduce cost and energy through flat-packing and rapid assembly. We studied the effect of the polygonal shape and cut pattern on the structural behavior of rotational kirigami units under tension and compression loads. Multi-step finite element models were developed, compared to experiments, and shown to predict experimental results robustly in the decimeter scale. We evaluate buckling-to-deployment load ratios, showing the load-carrying capacity of the system, and present a sensitivity analysis on localized geometric imperfections. These verified models can be used to further develop the system for load-carrying applications at larger scales.